There is an increasing interest in modeling groundwater contamination, particularly geogenic contaminant, on a large scale both from the researcher’s as well as policy maker’s point of view. However, modeling large scale groundwater contamination is very challenging due to the incomplete understanding of geochemical and hydrological processes in the aquifer. Despite the incomplete understanding, existing knowledge provides sufficient hints to develop predictive models of geogenic contamination. In this study we used a global database of fluoride measurements (>60,000 entities), as well as global-scale information relevant to soil, geology, elevation, climate, and hydrology to evaluate several hybrid methods. The hybrid methods were developed by combining two classification techniques including classification tree (CART) and knowledge based clustering (KBC) and three predictive techniques including multiple linear regression (MLR), adoptive neuro-fuzzy inference system (ANFIS) and logistic regression (LR). The results indicated that combination of classification techniques and nonlinear predictive method (ANFIS and LR) were more reliable than others and provided a better prediction capability. Among the different hybrid procedures, combination of KBC-ANFIS and also CART - ANFIS resulted in larger sensitivities and smaller false negative rates for both training and test data sets. However, as the CART classifier is very unstable and very sensitive to re-sampling, the combination of KBC and ANFIS or LR is preferred.
No comments:
Post a Comment
Note: only a member of this blog may post a comment.